og真人网站

欢迎访问 草业科学,今天是

og真人网站duohuaheimaicaokanghandaixietongluwajue

张彩峡 吴洪新 毕玉芬

引用本文: 张彩峡,吴洪新,毕玉芬. 多花黑麦草抗旱代谢通路挖掘. 草业科学, 2020, 37(0): 1-10 doi: 10.11829/j.issn.1001-0629.20190636 shu
Citation:  ZHANG C X, WU H X, BI Y F. Mining metabolic pathways in drought tolerance of . Pratacultural Science, 2020, 37(0): 1-10 doi: 10.11829/j.issn.1001-0629.20190636 shu

多花黑麦草抗旱代谢通路挖掘

    作者简介: 张彩峡(1980-),女,甘肃漳县人,在读博士生,研究方向为草种资源利用与抗逆代谢。E-mail: ;
    通讯作者: 毕玉芬,
  • 基金项目:og真人网站 云南省重点研发计划项目(2018BB001-03);西藏自治区高等学校科研创新团队og真人网站项目(西藏职业技术学院 2014-2017)

摘要: 为了明确多花黑麦草抗旱代谢机制相关的重要通路,本研究采用气相色谱质谱联用技术,以og真人网站国南方冬季主要轮作品种“蓝天堂”为研究材料,检测其干旱胁迫的主要代谢产物。结果表明,干旱胁迫下,多花黑麦草代谢产物显著变化,通过Agilent ChemiStation软件、NIST2011数据库、SIMCA-P 12.0软件等多种软件和数据库相结合识别分析得到19个重要代谢物,其中衣康酸、牛磺酸、蔗糖、葡萄糖、赖氨酸、异亮氨酸、酪氨酸、天冬酰胺、肌醇、1-氨基环丙烷基-1-羧酸10种代谢物浓度显著下调,1氢吲哚、磷酸、果糖、柠檬酸、苹果酸、高丝氨酸、苏氨酸、苯丙氨酸、肌酐9种代谢物浓度显著上调表达。使用MetaboAnalyst4.0软件进行通路富集,可以得到显著变化的9条通路(P < 0.05): 抗坏血酸和醛糖酸代谢、甘氨酸丝氨酸苏氨酸代谢、丙氨酸天冬氨酸谷氨酸代谢、三羧酸循环、半乳糖代谢、氨酰tRNA生物合成、精氨酸脯氨酸代谢、赖氨酸生物合成、氰基氨基酸代谢。这9条对干旱响应最显著的通路与多花黑麦草抗旱性密切相关。研究明确了多花黑麦草在干旱胁迫下的主要代谢产物,挖掘出与多花黑麦草抗旱相关的重要代谢通路,对探知多花黑麦草的抗旱代谢机制具有重要意义,为进一步在干旱半干旱地区推广多花黑麦草提供理论依据。

English

    1. [1]

      李文龙, 蔡栋, 苏文亮, 魏巍, 朱高峰, 赵志刚, 许静.  基于SPEI指数与GIS技术的高寒草地干旱生态风险动态评价[J]. 草业科学, 2019, 36(6): 1531-1543.
      LI W L, CAI D, SU W L, WEI W, ZHU G F, ZHAO Z G, XU J.  Dynamic assessment of ecological risk owing to drought in alpine meadows based on SPEI index and GIS technology[J]. Pratacultural Scienceog真人网站, 2019, 36(6): 1531-1543.

    2. [2]

      曲涛, 南志标.  作物和牧草对干旱胁迫的响应及机理研究进展[J]. 草业学报, 2008, 17(2): 126-135. doi:
      QU T, NAN Z B.  Research progress on responses and mechanisms of crop and grass under drought stress[J]. Acta Prataculturae Sinica, 2008, 17(2): 126-135. doi:

    3. [3]

      王建兵, 张德罡, 田青.  甘肃中西部干旱半干旱地区牧民对草原政策认知分析[J]. 草地学报, 2013, 21(1): 11-17. doi:
      WANG J B, ZHANG D G, TIAN Q.  Evaluating herders' knowledge of grassland policy in arid and semi-arid pastoral areas in central and western Gansu[J]. Acta Agrestia Sinica, 2013, 21(1): 11-17. doi:

    4. [4]

      孙旭春, 顾洪如, 张霞, 董臣飞, 许能祥.  3种生长抑制剂对多花黑麦草种子产量的影响[J]. 草业科学, 2018, 35(8): 1959-1964. doi:
      SUN X C, GU H R, ZHANG X, DONG C F, XU N X.  Effects of the application of three growth regulators on seed yield of Lolium multiflorum[J]. Pratacultural Science, 2018, 35(8): 1959-1964. doi:

    5. [5]

      FUJITA Y, FUJITA M, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K.  ABA-mediated transcriptional regulation in response to osmotic stress in plants[J]. Journal of Plant Research, 2011, 124(4): 509-525. doi:

    6. [6]

      MIYAKAWA T, FUJITA Y, YAMAGUCHI-SHINOZAKI K, TANOKURAL M.  Structure and function of abscisic acid receptors[J]. Trends in Plant Science, 2013, 18(5): 259-266. doi:

    7. [7]

      BABAK B, STATOSHI I, MIKI F, YASUNARI F, HIRONORI T, YURIKO O, KAZUKO Y S, KAZUO S.  Characterization of the promoter region of an Arabidopsis gene for 9-cisepoxycarotenoid dioxygenase involved in dehydration-inducible transcription[J]. DNA Research, 2013, 20(4): 315-324. doi:

    8. [8]

      KIM J S, MIZOI J, KIDOKORO S, MARUYAMA K, NAKAJIMA J, NAKASHIMA K, MITSUDA N, MATSUI M, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K.  Arabidopsis growth-regulating factor 7 functions as a transcriptional repressor of abscisic acid- and osmotic stress-responsive genes, including DREB2A[J]. Plant Cell, 2012, 24(8): 3393-3405. doi:

    9. [9]

      MIZOI J, SHINOZAKI K, YAMAGUCHI-SHINOZAKI K.  AP2/ERF family transcription factors in plant abiotic stress responses[J]. Biochim Biophys Acta, 2012, 1819(2): 86-96. doi:

    10. [10]

      GANGULY D R, CRISP P A, EICHTEN S R, POGSON B J.  The Arabidopsis DNA methylome is stable under transgenerational drought stress[J]. Plant Physiology, 2017, 175(4): 1893-1912. doi:

    11. [11]

      YU X Q, BAI G H, LIU S W, LUO N, WANG Y, RICHMOND D S, PIJUT P M, JACKSON S A, YU J M, JIANG Y W.  Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions[J]. Journal of Experimental Botany, 2013, 64(6): 1537-1551. doi:

    12. [12]

      HATIER J B, FAVILLE M J, HICKEY M J, KOOLAARD J P, SCHMIDT J, CAREY B L, JONES C S.  Plant vigour at establishment and following defoliation are both associated with responses to drought in perennial ryegrass (Lolium perenne L.)[J]. Journal of Experimental Botany, 2014, 65(20): 5823-5834. doi:

    13. [13]

      CHAPMAN M A.  Transcriptome sequencing and marker development for four underutilized legumes[J]. Applications in Plant Sciences, 2015, 3(2): 1400111-. doi:

    14. [14]

      FOITO A, BYRNE S L, SHEPHERD T, STEWART D, BARTH S.  Transcriptional and metabolic profiles of Lolium perenne L. genotypes in response to a PEG-induced water stress[J]. Plant Biotechnology Journal, 2009, 7(8): 719-732. doi:

    15. [15]

      AMIARD V, MORVAN-BERTRAND A, BILLARD J P, HUAULT C, KELLER F, PRUDHOMME M P.  Fructans, but not the sucrosyl-galactosides, raffinose and loliose, are affected by drought stress in perennial ryegrass[J]. Plant Physiology, 2003, 132(4): 2218-2229. doi:

    16. [16]

      PAN L, MENG C, WANG J P, MA X, FAN X M, YANG Z F, ZHOU M L, ZHANG X Q.  Integrated omics data of two annual ryegrass (Lolium multiflorum L.) genotypes reveals core metabolic processes under drought stress[J]. BMC Plant Biology, 2018, 18(1): 26-43. doi:

    17. [17]

      STEUER R.  Review: on the analysis and interpretation of correlations in metabolomic data[J]. Briefings in Bioinformatics, 2006, 7(2): 151-158. doi:

    18. [18]

      CAMACHO D, DE LA FUENTE A, MENDES P.  The origin of correlations in metabolomics data[J]. Metabolomics, 2005, 1(1): 53-63. doi:

    19. [19]

      刘建新, 王瑞娟, 王鑫, 李东波.  La(NO3)3对盐胁迫下黑麦草幼苗生长及抗逆生理特性的影响[J]. 中国生态农业学报, 2011, 19(2): 353-357. doi:
      LIU J X, WANG R J, WANG X, LI D B.  Effect of La(NO3)3 on seedling growth and physiological characteristics of ryegrass under NaCl stress[J]. Chinese JoumaI of Eco-AgrIcuIture, 2011, 19(2): 353-357. doi:

    20. [20]

      辛金霞. 一年生黑麦草、高羊茅及杂交羊茅黑麦草抗旱性研究. 兰州: 甘肃农业大学硕士学位论文, 2010.
      XIN J X. The research of drought resistance to annual ryegrass, tall fescue and hybrid festuloium. Master Thesis. Lanzhou: Gansu Agricultural University, 2010.

    21. [21]

      SREEKUMAR A, POISSON L, RAJENDIRAN T, CHINNAIYAN A.  Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression[J]. Nature, 2009, 457(7231): 910-914. doi:

    22. [22]

      FAROOQ M, WAHID A, KOBAYASHI N, FUJITA D, BASRA S M A.  Plant drought stress: Effects, mechanisms and management[J]. Agronomy for Sustainable Development, 2009, 29(1): 185-212. doi:

    23. [23]

      何亚飞, 李霞, 谢寅峰.  植物中糖信号及其对逆境调控的研究进展[J]. 植物生理学, 2016, 52(3): 241-249.
      HE Y F, LI X, XIE Y F.  Research progress in sugar signal and its regulation of stress in plants[J]. Plant Physiology Communications, 2016, 52(3): 241-249.

    24. [24]

      项萍, 唐喆.  气相色谱-质谱联用法测定植物组织中糖与糖醇[J]. 质谱学报, 2018, 39(3): 360-365. doi:
      XIANG P, TANG Z.  Determination of sugars and sugar alcohols in plant tissues by GC/MS[J]. Journal of Chinese Mass Spectrometry Society, 2018, 39(3): 360-365. doi:

    25. [25]

      CHANG L, WANG L, PENG C, TONG Z, WANG D, DING G, XIAO J, GUO A, WANG X.  The chloroplast proteome response to drought stress in cassava leaves[J]. Plant Physiology and Biochemistry, 2019, 142(): 351-362. doi:

    26. [26]

      ZADRAZNIK T, MOEN A, SUSTAR-VOZLIC J.  Chloroplast proteins involved in drought stress response in selected cultivars of common bean (Phaseolus vulgaris L.)[J]. 3 Biotech, 2019, 9(9): 331-. doi:

    27. [27]

      RUAN Y L.  Sucrose metabolism:Gateway to diverse carbon use and sugar signaling[J]. Annual Review of Plant Biology, 2014, 65(1): 33-67. doi:

    28. [28]

      TAUZIN A S, GIARDINA T.  Sucrose and invertases, a part of the plant defense response to the biotic stresses[J]. Frontiers in Plant Scienceog真人网站, 2014, 5(5): 1-8.

    29. [29]

      XUE GP, MCINTYRE C L, GLASSOP D, SHORTER R.  Use of expression analysis to dissect alterations in carbohydrate metabolism in wheat leaves during drought stress[J]. Plant Molecular Biology, 2008, 67(3): 197-214. doi:

    30. [30]

      LIU J, HASNUZZAMAN M, WEN H, ZHANG J, PENG T, SUN H, ZHAO Q.  High temperature and drought stress cause abscisic acid and reactive oxygen species accumulation and suppress seed germination growth in rice[J]. Protoplasma, 2019, 256(5): 1217-1227. doi:

    31. [31]

      YOU J, CHAN Z.  ROS Regulation During Abiotic Stress Responses in Crop Plants[J]. Frontiers in Plant Science, 2015, 6(): 1092-.

    32. [32]

      ZHOU R, YU X, OTTOSEN C O, ROSENQVIST E, ZHAO L, WANG Y, YU W, ZHAO T, WU Z.  Drought stress had a predominant effect over heat stress on three tomato cultivars subjected to combined stress[J]. BMC Plant Biology, 2017, 17(1): 24-. doi:

    33. [33]

      HILDEBRANDT T M.  Synthesis versus degradation: Directions of amino acid metabolism during Arabidopsis abiotic stress response[J]. Plant Molecular Biology, 2018, 98(): 121-135. doi:

    34. [34]

      ALEKSZA D, HORVATH G V, SANDOR G, SZABADOS L.  Proline accumulation is regulated by transcription factors associated with phosphate starvation[J]. Plant Physiology, 2017, 175(): 555-567. doi:

    35. [35]

      SZABADOS L, SAVOURE A.  Proline: A multifunctional amino acid[J]. Trends in Plant Scienceog真人网站, 2010, 15(): 89-97.

    36. [36]

      VERSLUES P E, SHARMA S.  Proline metabolism and its implications for plant-environment interaction[J]. Arabidopsis Book, 2010, 8(): e0140-. doi:

    37. [37]

      ZANDALINAS S I, MITTLER R, BALFAGON D, ARBONA V, GOMEZ-ASDENAS A.  Plant adaptations to the combination of drought and high temperatures[J]. Physiologia Plantarum, 2018, 162(): 2-12. doi:

    38. [38]

      BOUGOUFFA S, RADOVANOVIC A, ESSACK M, B AJIC V B.  DEOP: a database on osmoprotectants and associated pathways[J]. Database, 2014, (): 1-13.

    39. [39]

      BATISTA-SILVA W, HEINEMANN B, RUGEN N, NUNES-NESI A, ARAUJO W L, BRAUN H P, HILDEBRANDT T M.  The role of amino acid metabolism during abiotic stress release[J]. Plant Cell and Environment, 2019, 42(): 1630-1644. doi:

    40. [40]

      郭瑞, 周际, 杨帆, 李峰, 李昊如, 夏旭, 刘琪.  拔节孕穗期小麦干旱胁迫下生长代谢变化规律[J]. 植物生态学报, 2016, 40(12): 1319-1327. doi:
      GUO R, ZHOU J, YANG F, LI F, LI H R, XIA X, LIU Q.  Growth metabolism of wheat under drought stress at the jointing-booting stage[J]. Chinese Journal of Plant Ecology, 2016, 40(12): 1319-1327. doi:

    41. [41]

      ASHRAFIA M, AZIMI-MOQADAMA M R, MORADIB P, MOHSENI-FARDA E, SHEKARIA F, KOMPANY-ZAREHC M.  Effect of drought stress on metabolite adjustments in drought tolerant and sensitive thyme[J]. Plant Physiology and Biochemistry, 2018, 132(): 391-399. doi:

    42. [42]

      MCKEON T A, HOFFMAN N E, YANG S F.  The effect of plant-hormone pretreatments on ethylene production and synthesis of 1-aminocyclopropane-l-carboxylic acid in water-stressed wheat leaves[J]. Planta, 1982, 155(): 437-443. doi:

    43. [43]

      SARKER U, OBA S.  Drought stress effects on growth, ROS markers, compatible solutes, phenolics, flavonoids, and antioxidant activity in Amaranthus tricolor[J]. Applied Biochemistry and Biotechnology, 2018, 186(4): 999-1016. doi:

    44. [44]

      AZIZ A, AKRAM N A, ASHRAF M.  Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes[J]. Plant Physiology and Biochemistry, 2018, 123(): 192-203. doi:

    45. [45]

      XU L, ISLAM F, ALI B, PEI Z, LI J, GHANI MA, ZHOU W.  Silicon and water-deficit stress differentially modulate physiology and ultrastructure in wheat (Triticum aestivum L.)[J]. 3 Biotech, 2017, 7(4): 273-. doi:

    46. [46]

      MONTEIRO F, PHAM T, ZUILY Y, FERRARI R, VIEIRA J, MAZLIAK P.  Effects of water stress on the biosynthesis and degradation of polyunsaturated lipid molecular species in leaves of Vigna unguiculata[J]. Plant Physiology and Biochemistryog真人网站, 1993, 31(5): 707-715.

    47. [47]

      MATOS AR, ARCY-LAMETA A, FRANCA M.  A novel patatin-like gene stimulated by drought stress encodes a galatolipid acyl hydrolase[J]. FEBS Letters, 2001, 491(3): 188-192. doi:

    1. [1]

      关皓张明均宋珊郭旭生干友民 . 添加剂对不同干物质含量的多花黑麦草青贮品质的影响. 草业科学, doi: 

    2. [2]

      乔伟艳顾洪如沈益新 . 稻茬种植多花黑麦草对土壤肥力和微生物组成的影响. 草业科学, doi: 

    3. [3]

      贾露洁杨春华王目森og真人网站 . 牛粪尿施用时间对多花黑麦草青贮料品质的影响. 草业科学,

    4. [4]

      柳茜王红梅傅平何晓琴敖学成苏茂师尚礼 . 多花黑麦草╋光叶紫花苕混播草地生产力特征. 草业科学,

    5. [5]

      孙园园关萍何杉石建明 . 镉胁迫对多花黑麦草镉积累特征、生理抗性及超微结构的影响. 草业科学, doi:  og真人网站

    6. [6]

      李季杨春华贾露洁梁欢郭丽娟刘羽李攀峰og真人网站 . 多花黑麦草绿汁发酵液中乳酸菌的分离鉴定. 草业科学,

    7. [7]

      唐海洋冯涛同琳静石丽娜牛欣祎沈益新 . 聚谷氨酸硫基复合肥在甜高粱和多花黑麦草上的肥效. 草业科学, doi:  og真人网站

    8. [8]

      宋士伟焦德志杨允菲 . 东北草地野大麦对混合盐碱胁迫的生理响应及转录组分析. 草业科学, doi: 

    9. [9]

      王新宇张新全黄琳凯聂刚 . 鸭茅EST-SSR标记在4种禾草上的可转移性. 草业科学, doi: 

    10. [10]

      曾庆飞韦鑫陈锡陈光洁马培杰吴佳海王小利 . 多花黑麦草特高和多年生黑麦草四季高频组培再生体系的优化与建立. 草业科学, doi: 

    11. [11]

      王日明王志强向佐湘 . 外源γ-氨基丁酸对高温胁迫下黑麦草抗氧化防御系统及激素代谢的影响. 草业科学, doi: 

    12. [12]

      冶娜娜张灵菲卫万荣王菊霞张小刚麻安卫江小雷 . 啮齿动物应对植物次生代谢物的行为策略. 草业科学, doi:  og真人网站

    13. [13]

       柴胡提取物对热应激奶牛生产性能和血液代谢的影响. 草业科学, doi: 

    14. [14]

      张新跃李元华苟文龙张瑞珍 . 多花黑麦草研究进展. 草业科学,

    15. [15]

      陈连民王洪荣 . 瘤胃中乳酸的代谢及其调控机制. 草业科学, doi: 

    16. [16]

      og真人网站  baoshuijiduichuipencaojianzhiheshenglidaixiedeyingxiang. caoyekexue,

    17. [17]

      马艳华??瑜张洪荣 . 烯效唑对黑麦草抗旱生理特性的影响. 草业科学,

    18. [18]

      王晓瑜郭艳娥冯希施颖段廷玉 . AM真菌与禾草内生真菌对黑麦草抗旱性的影响. 草业科学, doi: 

    19. [19]

      李本峰杜红梅 . 褪黑素预处理提高多年生黑麦草抗旱性的机理分析. 草业科学, doi: 

    20. [20]

      王宇涛辛国荣杨中艺陈三有 . 多花黑麦草的应用研究进展. 草业科学,

  • og真人网站

    图 1  og真人网站 多花黑麦草代谢组变化趋势

    Figure 1.  The metabolomic profile L. multiflorum under drought stress

    图 2  GC-MS技术平台的稳定性评估

    Figure 2.  The scatter plot of the minimal correlation coefficient

    图 3  og真人网站 多花黑麦草干旱胁迫代谢组主成分分析

    Figure 3.  og真人网站 Principal component analysis (PCA)

    图 4  og真人网站 多花黑麦草干旱胁迫下靶标代谢物的筛选

    Figure 4.  Metabolomic biomarkers

    图 5  干旱胁迫下多花黑麦草的显著代谢通路分析

    Figure 5.  og真人网站 Enriched pathways determined by MetaboAnalyst 4.0

    表 1  og真人网站 80个差异代谢产物变化趋势分布

    Table 1.  og真人网站 Distribution of 80 significant metabolites

    代谢物分类
    Metabolites
    浓度显著升高的代谢物(44种)
    44 increased metabolites
    浓度显著降低的代谢物(36种)
    36 decreased metabolites
    植物生长调节剂
    Plant growth regulators
    抗坏血酸 Ascorbic acid、氢吲哚1H-Indole、磷酸 Phosphateγ-氨基丁酸γ-Aminobutyric acid、吲哚乙酸 Indol-3-acetic acid、1-氢吲哚-2,3-二酮1H-Indole-2,3-dione、衣康酸 Itaconic acid、牛磺酸 Taurine
    碳水化合物
    Carbohydrates
    阿洛糖 Allose、琥珀酸 Succinic acid、半乳糖 Galactose、苹果酸 Malic acid、纤维二糖 Cellobiose、塔罗糖 Talose、龙胆二糖 Gentiobiose、果糖 Fructose海藻糖 Trehalose、乳果糖 Lactulose顺乌头酸 cis-Aconitic acid、葡萄糖酸 Gluconic acid、丙酸 Propanoic acid、富马酸 Fumaric acid、乳糖 Lactose、α-酮戊二酸2-ketoglutaric acid、丁烯酸 Butanoic acid、甘露糖 Mannose、丙二酸 Malonic acid、柠檬酸 Citric acid、葡萄糖醛酸 Glucuronic acid2-丁烯酸2-Butenoic acid、β-龙胆二糖β-Gentiobiose、蔗糖 Sucrose、葡萄糖 Glucose、麦芽糖 Maltose、山梨糖 Sorbose、琥珀酰丙酮 Succinylacetone
    氨基酸
    Amino acids
    高丝氨酸 Homoserine、甘氨酸 Glycine、苏氨酸 Threonine、色氨酸 Tryptophan、脯氨酸 Proline、苯丙氨酸 Phenylalanine、β-丙氨酸β-Alanine、尿素 Urea、β-氨基异丁酸β-Amino isobutyric acid、肌氨酸酐 Creatinine亮氨酸 Leucine、丝氨酸 Serine、2-氨基丁酸2-Aminobutyric acid、赖氨酸 Lysine、天冬氨酸 Aspartic acid、异亮氨酸 Isoleucine、酪氨酸 Tyrosine、腐氨 Putrescine、甲硫氨酸 Methionine、天冬酰胺酸 Asparagine
    脂质类
    Lipids
    2-羟基十一烷酸2-Hydroxyundecanoic acid、豆甾醇 Stigmasterol、甘油酸 Glyceric acid9-十八碳烯酸9-Octadecenoic acid、β-谷甾醇β-Sitosterol、亚油酸 Linoleic acid 9,12,15 -亚麻酸9,12,15-Octadecatrienoic acid、9,12-十八二烯酸9,12-Octadecadienoic acid、棕榈酸 Palmitic acid、硬脂酸 Stearic acid
    核苷酸
    Nucleotides
    胸腺嘧啶 Thymine、腺嘌呤 Adenine、嘧啶 Pyrimidine腺苷 Adenosine、肌醇 Myo-Inositol
    其他
    Others
    山梨醇 Sorbitol、苯唑酸 Benzoic acid、N-苯基-2-脱氧-D-葡萄糖胺 Erythro-Pentitol、半乳糖醇 Dulcitol二羟甾醇 Estriol、1-氨基环丙烷基-1-羧酸1-Aminocyclopropane-1-carboxylic acid (ACC)、2-哌啶酮2-Piperidone、维生素 E Tocophero、肌醇半乳糖苷 Galactinol
    下载: 导出CSV
    og真人网站_og真人网站-「官网平台」 10分六合-10分六合全天计划 ag真人app_Ag真人app下载 金沙官网-金沙网站所有网址 BBIN真人开户_bbin真人注册【开户首充送大礼】 电子娱乐大平台
  • <code id='gb5tc'><i id='gb5tc'><q id='gb5tc'><legend id='gb5tc'><pre id='gb5tc'><style id='gb5tc'><acronym id='gb5tc'><i id='gb5tc'><form id='gb5tc'><option id='gb5tc'><center id='gb5tc'></center></option></form></i></acronym></style><tt id='gb5tc'></tt></pre></legend></q></i></code><center id='gb5tc'></center>

      <dd id='gb5tc'></dd>

          <style id='gb5tc'></style><sub id='gb5tc'><dfn id='gb5tc'><abbr id='gb5tc'><big id='gb5tc'><bdo id='gb5tc'></bdo></big></abbr></dfn></sub>
          <dir id='gb5tc'></dir>
      1. 加载中
      2. 图(5)表(1)
        计量
        • PDF下载量:  10
        • 文章访问数:  15
        • HTML全文浏览量:  14
        文章相关
        • 通讯作者:  毕玉芬,
        • 收稿日期:  2018-12-31
        • 网络出版日期:  2019-07-24
        通讯作者: 陈斌,
        • 1. 

          shenyanghuagongdaxuecailiaokexueyugongchengxueyuan shenyang 110142

        1. 本站搜索
        2. 百度学术搜索
        3. 万方数据库搜索
        4. CNKI搜索

        /

        返回文章
        og真人网站_og真人网站-「官网平台」 10分六合-10分六合全天计划 ag真人app_Ag真人app下载 金沙官网-金沙网站所有网址 BBIN真人开户_bbin真人注册【开户首充送大礼】 电子娱乐大平台